Part Number Hot Search : 
SR10100K TPS40 01950 C3216X7R 74VHC574 BC858B APA600 G915T25B
Product Description
Full Text Search
 

To Download ADUM260N1BRIZ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  5.0 kv rms, 6-channel digital isolators data sheet adum260n / adum261n / adum262n / adum263n rev. 0 document feedback information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 ?2016 analog devices, inc. all rights reserved. technical support www.analog.com features high common-mode transient immunity: 100 kv/s high robustness to radiated and conducted noise low propagation delay 13 ns maximum for 5 v operation 15 ns maximum for 1.8 v operation 150 mbps maximum guaranteed data rate safety and regulatory approvals (pending) ul recognition: 5000 v rms for 1 minute per ul 1577 csa component acceptance notice 5a vde certificate of conformity din v vde v 0884-10 (vde v 0884-10):2006-12 v iorm = 849 v peak cqc certification per gb4943.1-2011 low dynamic power consumption 1.8 v to 5 v level translation high temperature operation: 125c fail-safe high or low options 16-lead, rohs-compliant, wide body soic_ic package applications general-purpose multichannel isolation serial peripheral interface (spi)/data converter isolation industrial field bus isolation general description the adum260n / adum261n / adum262n / adum263n 1 are 6-channel digital isolators based on analog devices, inc., i coupler? technology. combining high speed, complementary metal-oxide semiconductor (cmos) and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices and other integrated couplers. the maxi- mum propagation delay is 13 ns with a pulse width distortion of less than 4.5 ns at 5 v operation. channel to channel matching of propagation delay is tight at 4.0 ns maximum. the adum260n / adum261n / adum262n / adum263n data channels are independent and are available in a variety of configurations with a withstand voltage rating of 5.0 kv rms (see the ordering guide). the devices operate with the supply voltage on either side ranging from 1.7 v to 5.5 v, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. unlike other optocoupler alternatives, dc correctness is ensured in the absence of input logic transitions. two different fail-safe options are available by which the outputs transition to a predeter- mined state when the input power supply is not applied. functional block diagrams encode decode encode decode encode decode encode decode encode decode encode decode v dd1 v ia v ib v ic v id v ie v if v oa v ob v oc v od v oe v of gnd 1 v dd2 adum260n gnd 2 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 14998-001 figure 1. adum260n functional block diagram decode encode encode decode encode decode encode decode encode decode encode decode v dd1 v ia v ib v ic v id v ie v of v oa v ob v oc v od v oe v if gnd 1 v dd2 adum261n gnd 2 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 14998-002 figure 2 . adum261n functional block diagram decode encode decode encode encode decode encode decode encode decode encode decode v dd1 v ia v ib v ic v id v oe v of v oa v ob v oc v od v ie v if gnd 1 v dd2 adum262n gnd 2 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 14998-003 figure 3. adum262n functional block diagram decode encode decode encode decode encode encode decode encode decode encode decode v dd1 v ia v ib v ic v od v oe v of v oa v ob v oc v id v ie v if gnd 1 v dd2 adum263n gnd 2 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 14998-004 figure 4. adum263n functional block diagram 1 protected by u.s. patents 5,952,849; 6,873,065; 6, 903,578; and 7,075,329. other patents are pending.
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 2 of 23 table of contents features .............................................................................................. 1 ? applications ....................................................................................... 1 ? general description ......................................................................... 1 ? functional block diagrams ............................................................. 1 ? revision history ............................................................................... 2 ? specifications ..................................................................................... 3 ? electrical characteristics5 v operation................................ 3 ? electrical characteristics3.3 v operation ............................ 5 ? electrical characteristics2.5 v operation ............................ 7 ? electrical characteristics1.8 v operation ............................ 9 ? insulation and safety related specifications .......................... 11 ? package characteristics ............................................................. 11 ? regulatory information ............................................................. 11 ? din v vde v 0884-10 (vde v 0884-10) insulation characteristics ............................................................................ 12 ? recommended operating conditions .................................... 12 ? absolute maximum ratings ......................................................... 13 ? esd caution................................................................................ 13 ? pin configurations and function descriptions ......................... 14 ? typical performance characteristics ........................................... 18 ? theory of operation ...................................................................... 20 ? applications information .............................................................. 21 ? pcb layout ................................................................................. 21 ? propagation delay related parameters ................................... 21 ? jitter measurement ..................................................................... 21 ? insulation lifetime ..................................................................... 21 ? outline dimensions ....................................................................... 23 ? ordering guide .......................................................................... 23 ? revision history 12/2016revision 0: initial version
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 3 of 23 specifications electrical characteristics5 v operation all typical specifications are at t a = 25c, v dd1 = v dd2 = 5 v. minimum/maximum specifications apply over the entire recommended operation range of 4.5 v v dd1 5.5 v, 4.5 v v dd2 5.5 v, and ?40c t a +125c, unless otherwise noted. switching specifications are tested with c l = 15 pf and cmos signal levels, unless otherwise noted. supply currents are specified with 50% duty cycle signals. table 1. parameter symbol min typ max unit test conditions/comments switching specifications pulse width pw 6.6 ns within pulse width distortion (pwd) limit data rate 1 150 mbps within pwd limit propagation delay t phl , t plh 4.8 7.2 13 ns 50% input to 50% output pulse width distortion pwd 0.5 4.5 ns |t plh ? t phl | change vs. temperature 1.5 ps/c propagation delay skew t psk 6.1 ns between any two units at the same temperature, voltage, and load channel matching codirectional t pskcd 0.5 4.0 ns opposing direction t pskod 0.5 4.5 ns jitter 490 ps p-p see the jitter measurement section 70 ps rms see the jitter measurement section dc specifications input threshold voltage logic high v ih 0.7 v ddx v logic low v il 0.3 v ddx v output voltage logic high v oh v ddx ? 0.1 v ddx v i ox 2 = ?20 a, v ix = v ixh 3 v ddx ? 0.4 v ddx ? 0.2 v i ox 2 = ?4 ma, v ix = v ixh 3 logic low v ol 0.0 0.1 v i ox 2 = 20 a, v ix = v ixl 4 0.2 0.4 v i ox 2 = 4 ma, v ix = v ixl 4 input current per channel i i ?10 +0.01 +10 a 0 v v ix v ddx quiescent supply current adum260n i dd1 (q) 2.3 3.5 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 3.3 4.52 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 19.3 30 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 3.5 4.82 ma v i 5 = 1 (n0), 0 (n1) 6 adum261n i dd1 (q) 2.5 3.8 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 3.2 4.22 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 16.0 24.8 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 7.2 11.2 ma v i 5 = 1 (n0), 0 (n1) 6 adum262n i dd1 (q) 2.8 4.0 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 3.0 4.2 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 14.1 22.5 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 10.5 16.7 ma v i 5 = 1 (n0), 0 (n1) 6 adum263n i dd1 (q) 3.0 4.26 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 2.8 3.92 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 11.8 18.9 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 14.6 23 ma v i 5 = 1 (n0), 0 (n1) 6
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 4 of 23 parameter symbol min typ max unit test conditions/comments dynamic supply current dynamic input i ddi (d) 0.01 ma/mbps inputs switching, 50% duty cycle dynamic output i ddo (d) 0.02 ma/mbps inputs switching, 50% duty cycle undervoltage lockout uvlo positive v ddx threshold v ddxuv+ 1.6 v negative v ddx threshold v ddxuv? 1.5 v v ddx hysteresis v ddxuvh 0.1 v ac specifications output rise/fall time t r /t f 2.5 ns 10% to 90% common-mode transient immunity 7 |cm h | 75 100 kv/s v ix = v ddx , v cm = 1000 v, transient magnitude = 800 v |cm l | 75 100 kv/s v ix = 0 v, v cm = 1000 v, transient magnitude = 800 v 1 150 mbps is the highest data ra te that can be guaranteed, although higher data rates are possible. 2 i ox is the channel x output current, where x = a, b, c, d, e, or f. 3 v ixh is the input side logic high. 4 v ixl is the input side logic low. 5 v i is the voltage input. 6 n0 refers to the adum260n0 / adum261n0 / adum262n0 / adum263n0 models. n1 refers to the adum260n1 / adum261n1 / adum262n1 / adum263n1 models. see the ordering guide section. 7 |cm h | is the maximum common-mode vo ltage slew rate that can be sustained while maintaining the voltage output (v o ) > 0.8 v ddx . |cm l | is the maximum common- mode voltage slew rate that can be sustained while maintaining v o > 0.8 v. the common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. table 2. total supply curre nt vs. data throughput 1 mbps 25 mbps 100 mbps parameter symbol min typ max min typ max min typ max unit supply current adum260n supply current side 1 i dd1 10.8 15.8 12.3 19.2 18.3 26 ma supply current side 2 i dd2 3.6 5.5 5.63 9.0 12.8 20.9 ma adum261n supply current side 1 i dd1 9.27 14.5 10.9 17.2 17.3 25.6 ma supply current side 2 i dd2 5.33 9.0 7.39 12 14.5 22.2 ma adum262n supply current side 1 i dd1 8.53 13.0 10.2 15.6 16.4 25.5 ma supply current side 2 i dd2 6.83 10.5 8.64 13.1 14.6 22.3 ma adum263n supply current side 1 i dd1 7.47 12.3 9.35 14.5 15.9 23 ma supply current side 2 i dd2 8.75 14.0 10.5 16.0 17.0 23.3 ma
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 5 of 23 electrical characteristics3.3 v operation all typical specifications are at t a = 25c, v dd1 = v dd2 = 3.3 v. minimum/maximum specifications apply over the entire recommended operation range: 3.0 v v dd1 3.6 v, 3.0 v v dd2 3.6 v, and ?40c t a +125c, unless otherwise noted. switching specifications are tested with c l = 15 pf and cmos signal levels, unless otherwise noted. supply currents are specified with 50% duty cycle signals. table 3. parameter symbol min typ max unit test conditions/comments switching specifications pulse width pw 6.6 ns within pwd limit data rate 1 150 mbps within pwd limit propagation delay t phl , t plh 4.8 6.8 14 ns 50% input to 50% output pulse width distortion pwd 0.7 4.5 ns |t plh ? t phl | change vs. temperature 1.5 ps/c propagation delay skew t psk 7.5 ns between any two units at the same temperature, voltage, and load channel matching codirectional t pskcd 0.7 4.0 ns opposing direction t pskod 0.7 4.5 ns jitter 580 ps p-p see the jitter measurement section 120 ps rms see the jitter measurement section dc specifications input threshold voltage logic high v ih 0.7 v ddx v logic low v il 0.3 v ddx v output voltage logic high v oh v ddx ? 0.1 v ddx v i ox 2 = ?20 a, v ix = v ixh 3 v ddx ? 0.4 v ddx ? 0.2 v i ox 2 = ?2 ma, v ix = v ixh 3 logic low v ol 0.0 0.1 v i ox 2 = 20 a, v ix = v ixl 4 0.2 0.4 v i ox 2 = 2 ma, v ix = v ixl 4 input current per channel i i ?10 +0.01 +10 a 0 v v ix v ddx quiescent supply current adum260n i dd1 (q) 2.2 3.4 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 3.1 4.1 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 19 27.7 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 3.4 4.7 ma v i 5 = 1 (n0), 0 (n1) 6 adum261n i dd1 (q) 2.3 3.6 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 3.0 4.0 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 15.8 24.6 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 7.0 11 ma v i 5 = 1 (n0), 0 (n1) 6 adum262n i dd1 (q) 2.6 3.8 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 2.8 4.0 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 13.9 22.2 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 10.3 16.5 ma v i 5 = 1 (n0), 0 (n1) 6 adum263n i dd1 (q) 2.8 4.16 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 2.6 3.82 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 11.5 18.5 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 14.3 22.5 ma v i 5 = 1 (n0), 0 (n1) 6 dynamic supply current dynamic input i ddi (d) 0.01 ma/mbps inputs switching, 50% duty cycle dynamic output i ddo (d) 0.01 ma/mbps inputs switching, 50% duty cycle
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 6 of 23 parameter symbol min typ max unit test conditions/comments undervoltage lockout uvlo positive v ddx threshold v ddxuv+ 1.6 v negative v ddx threshold v ddxuv? 1.5 v v ddx hysteresis v ddxuvh 0.1 v ac specifications output rise/fall time t r /t f 2.5 ns 10% to 90% common-mode transient immunity 7 |cm h | 75 100 kv/s v ix = v ddx , v cm = 1000 v, transient magnitude = 800 v |cm l | 75 100 kv/s v ix = 0 v, v cm = 1000 v, transient magnitude = 800 v 1 150 mbps is the highest data ra te that can be guaranteed, although higher data rates are possible. 2 i ox is the channel x output current, where x = a, b, c, d, e, or f. 3 v ixh is the input side logic high. 4 v ixl is the input side logic low. 5 v i is the voltage input. 6 n0 refers to the adum260n0 / adum261n0 / adum262n0 / adum263n0 models. n1 refers to the adum260n1 / adum261n1 / adum262n1 / adum263n1 models. see the ordering guide section. 7 |cm h | is the maximum common-mode vo ltage slew rate that can be sustained while maintaining the voltage output (v o ) > 0.8 v ddx . |cm l | is the maximum common- mode voltage slew rate that can be sustained while maintaining v o > 0.8 v. the common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. table 4. total supply curre nt vs. data throughput 1 mbps 25 mbps 100 mbps parameter symbol min typ max min typ max min typ max unit supply current adum260n supply current side 1 i dd1 10.5 15.5 11.7 18.6 16.6 24.6 ma supply current side 2 i dd2 3.4 5.4 5.4 7.8 11.8 19.9 ma adum261n supply current side 1 i dd1 9.0 14.2 10.4 16.6 15.7 24.1 ma supply current side 2 i dd2 5.1 8.8 7.0 11.6 13.1 20.8 ma adum262n supply current side 1 i dd1 8.3 12.8 9.8 14.8 15.2 24.3 ma supply current side 2 i dd2 6.6 10.3 8.3 12.6 13.8 21.5 ma adum263n supply current side 1 i dd1 7.3 12 8.9 14.2 14.9 22 ma supply current side 2 i dd2 8.5 13.7 9.9 15.6 16 22.3 ma
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 7 of 23 electrical characteristics2.5 v operation all typical specifications are at t a = 25c, v dd1 = v dd2 = 2.5 v. minimum/maximum specifications apply over the entire recommended operation range: 2.25 v v dd1 2.75 v, 2.25 v v dd2 2.75 v, ?40c t a +125c, unless otherwise noted. switching specifications are tested with c l = 15 pf and cmos signal levels, unless otherwise noted. supply currents are specified with 50% duty cycle signals. table 5. parameter symbol min typ max unit test conditions/comments switching specifications pulse width pw 6.6 ns within pwd limit data rate 1 150 mbps within pwd limit propagation delay t phl , t plh 5.0 7.0 14 ns 50% input to 50% output pulse width distortion pwd 0.7 5.0 ns |t plh ? t phl | change vs. temperature 1.5 ps/c propagation delay skew t psk 6.8 ns between any two units at the same temperature, voltage, load channel matching codirectional t pskcd 0.7 5.0 ns opposing direction t pskod 0.7 5.0 ns jitter 800 ps p-p see the jitter measurement section 190 ps rms see the jitter measurement section dc specifications input threshold voltage logic high v ih 0.7 v ddx v logic low v il 0.3 v ddx v output voltage logic high v oh v ddx ? 0.1 v ddx v i ox 2 = ?20 a, v ix = v ixh 3 v ddx ? 0.4 v ddx ? 0.2 v i ox 2 = ?2 ma, v ix = v ixh 3 logic low v ol 0.0 0.1 v i ox 2 = 20 a, v ix = v ixl 4 0.2 0.4 v i ox 2 = 2 ma, v ix = v ixl 4 input current per channel i i ?10 +0.01 +10 a 0 v v ix v ddx quiescent supply current adum260n i dd1 (q) 2.1 3.3 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 3.1 4.1 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 19 27.7 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 3.3 4.6 ma v i 5 = 1 (n0), 0 (n1) 6 adum261n i dd1 (q) 2.2 3.5 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 2.9 3.9 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 15.7 24.5 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 6.9 10.9 ma v i 5 = 1 (n0), 0 (n1) 6 adum262n i dd1 (q) 2.5 3.7 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 2.7 3.9 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 13.8 22.1 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 10.2 16.4 ma v i 5 = 1 (n0), 0 (n1) 6 adum263n i dd1 (q) 2.7 4.08 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 2.55 3.72 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 11.5 18.4 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 14.3 22.3 ma v i 5 = 1 (n0), 0 (n1) 6 dynamic supply current dynamic input i ddi (d) 0.01 ma/mbps inputs switching, 50% duty cycle dynamic output i ddo (d) 0.01 ma/mbps inputs switching, 50% duty cycle
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 8 of 23 parameter symbol min typ max unit test conditions/comments undervoltage lockout positive v ddx threshold v ddxuv+ 1.6 v negative v ddx threshold v ddxuv? 1.5 v v ddx hysteresis v ddxuvh 0.1 v ac specifications output rise/fall time t r /t f 2.5 ns 10% to 90% common-mode transient immunity 7 |cm h | 75 100 kv/s v ix = v ddx , v cm = 1000 v, transient magnitude = 800 v |cm l | 75 100 kv/s v ix = 0 v, v cm = 1000 v, transient magnitude = 800 v 1 150 mbps is the highest data ra te that can be guaranteed, although higher data rates are possible. 2 i ox is the channel x output current, where x = a, b, c, d, e, or f. 3 v ixh is the input side logic high. 4 v ixl is the input side logic low. 5 v i is the voltage input. 6 n0 refers to the adum260n0 / adum261n0 / adum262n0 / adum263n0 models. n1 refers to the adum260n1 / adum261n1 / adum262n1 / adum263n1 models. see the ordering guide section. 7 |cm h | is the maximum common-mode vo ltage slew rate that can be sustained while maintaining the voltage output (v o ) > 0.8 v ddx . |cm l | is the maximum common- mode voltage slew rate that can be sustained while maintaining v o > 0.8 v. the common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. table 6. total supply curre nt vs. data throughput 1 mbps 25 mbps 100 mbps parameter symbol min typ max min typ max min typ max unit supply current adum260n supply current side 1 i dd1 10.4 15.4 11.2 18.4 16 24 ma supply current side 2 i dd2 3.3 5.3 4.8 7.2 9.8 17.9 ma adum261n supply current side 1 i dd1 8.9 14.1 10.1 16.3 14.8 23.6 ma supply current side 2 i dd2 5.0 8.7 6.5 11.1 11.4 20.1 ma adum262n supply current side 1 i dd1 8.1 12.6 9.4 14.4 14.1 23.2 ma supply current side 2 i dd2 6.5 10.2 7.8 12.1 12.4 20.1 ma adum263n supply current side 1 i dd1 7.1 11.9 8.5 13.9 13.6 21 ma supply current side 2 i dd2 8.3 13.4 9.7 15.2 14.8 21.3 ma
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 9 of 23 electrical characteristics1.8 v operation all typical specifications are at t a = 25c, v dd1 = v dd2 = 1.8 v. minimum/maximum specifications apply over the entire recommended operation range: 1.7 v v dd1 1.9 v, 1.7 v v dd2 1.9 v, and ?40c t a +125c, unless otherwise noted. switching specifications are tested with c l = 15 pf and cmos signal levels, unless otherwise noted. supply currents are specified with 50% duty cycle signals. table 7. parameter symbol min typ max unit test conditions/comments switching specifications pulse width pw 6.6 ns within pwd limit data rate 1 150 mbps within pwd limit propagation delay t phl , t plh 5.8 8.7 15 ns 50% input to 50% output pulse width distortion pwd 0.7 5.0 ns |t plh ? t phl | change vs. temperature 1.5 ps/c propagation delay skew t psk 7.0 ns between any two units at the same temperature, voltage, and load channel matching codirectional t pskcd 0.7 5.0 ns opposing direction t pskod 0.7 5.0 ns jitter 470 ps p-p see the jitter measurement section 70 ps rms see the jitter measurement section dc specifications input threshold voltage logic high v ih 0.7 v ddx v logic low v il 0.3 v ddx v output voltage logic high v oh v ddx ? 0.1 v ddx v i ox 2 = ?20 a, v ix = v ixh 3 v ddx ? 0.4 v ddx ? 0.2 v i ox 2 = ?2 ma, v ix = v ixh 3 logic low v ol 0.0 0.1 v i ox 2 = 20 a, v ix = v ixl 4 0.2 0.4 v i ox 2 = 2 ma, v ix = v ixl 4 input current per channel i i ?10 +0.01 +10 a 0 v v ix v ddx quiescent supply current adum260n i dd1 (q) 2.0 3.2 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 3.0 4.0 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 18.7 27.4 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 3.3 4.6 ma v i 5 = 1 (n0), 0 (n1) 6 adum261n i dd1 (q) 2.1 3.4 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 2.9 3.9 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 15.5 24.3 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 6.8 10.8 ma v i 5 = 1 (n0), 0 (n1) 6 adum262n i dd1 (q) 2.4 3.6 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 2.7 3.9 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 13.7 22 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 10.1 16.3 ma v i 5 = 1 (n0), 0 (n1) 6 adum263n i dd1 (q) 2.6 4.03 ma v i 5 = 0 (n0), 1 (n1) 6 i dd2 (q) 2.5 3.72 ma v i 5 = 0 (n0), 1 (n1) 6 i dd1 (q) 11.3 18.3 ma v i 5 = 1 (n0), 0 (n1) 6 i dd2 (q) 14 22 ma v i 5 = 1 (n0), 0 (n1) 6 dynamic supply current dynamic input i ddi (d) 0.01 ma/mbps inputs switching, 50% duty cycle dynamic output i ddo (d) 0.01 ma/mbps inputs switching, 50% duty cycle
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 10 of 23 parameter symbol min typ max unit test conditions/comments undervoltage lockout uvlo positive v ddx threshold v ddxuv+ 1.6 v negative v ddx threshold v ddxuv? 1.5 v v ddx hysteresis v ddxuvh 0.1 v ac specifications output rise/fall time t r /t f 2.5 ns 10% to 90% common-mode transient immunity 7 |cm h | 75 100 kv/s v ix = v ddx , v cm = 1000 v, transient magnitude = 800 v |cm l | 75 100 kv/s v ix = 0 v, v cm = 1000 v, transient magnitude = 800 v 1 150 mbps is the highest data ra te that can be guaranteed, although higher data rates are possible. 2 i ox is the channel x output current, where x = a, b, c, d, e, or f. 3 v ixh is the input side logic high. 4 v ixl is the input side logic low. 5 v i is the voltage input. 6 n0 refers to the adum260n0 / adum261n0 / adum262n0 / adum263n0 models. n1 refers to the adum260n1 / adum261n1 / adum262n1 / adum263n1 models. see the ordering guide section. 7 |cm h | is the maximum common-mode vo ltage slew rate that can be sustained while maintaining the voltage output (v o ) > 0.8 v ddx . |cm l | is the maximum common- mode voltage slew rate that can be sustained while maintaining v o > 0.8 v. the common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. table 8. total supply curre nt vs. data throughput 1 mbps 25 mbps 100 mbps parameter symbol min typ max min typ max min typ max unit supply current adum260n supply current side 1 i dd1 10.2 15.2 11.3 18.2 15.9 23.9 ma supply current side 2 i dd2 3.3 5.3 4.8 7.2 9.8 17.9 ma adum261n supply current side 1 i dd1 8.7 13.9 10 16.2 14.6 23.4 ma supply current side 2 i dd2 4.9 8.6 6.4 11 11.4 20.1 ma adum262n supply current side 1 i dd1 8.0 12.5 9.2 14.2 13.9 23 ma supply current side 2 i dd2 6.4 10.1 7.7 12 12.4 20.1 ma adum263n supply current side 1 i dd1 7.0 11.8 8.3 13.7 13.3 20.7 ma supply current side 2 i dd2 8.2 13.3 9.5 15 14.5 21 ma
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 11 of 23 insulation and safety related specifications for additional information, see http://www.analog.com/icouplersafety . table 9. parameter symbol value unit test conditions/comments rated dielectric insulation voltage 5000 v rms 1-minute duration minimum external air gap (clearance) l (i01) 8.3 mm min measured from input termin als to output terminals, shortest distance through air minimum external tracking (creepage) l (i02) 8.3 mm min measured from input termin als to output terminals, shortest distance path along body minimum clearance in the plane of the printed circuit board (pcb clearance) l (pcb) 8.3 mm min measured from input termin als to output terminals, shortest distance through air, line of sight, in the pcb mounting plane minimum internal gap (internal clearance) 25.5 m min minimum distance through insulation tracking resistance (comparative tracking index) cti >400 v din iec 112/vde 0303 part 1 material group ii material group (din vde 0110, 1/89, table 1) package characteristics table 10. parameter symbol min typ max unit test conditions/comments resistance (input to output) 1 r i-o 10 13 capacitance (input to output) 1 c i-o 2.2 pf f = 1 mhz input capacitance 2 c i 4.0 pf ic junction to ambient thermal resistance ja 45 c/w thermocouple located at center of package underside 1 the device is considered a 2-terminal device: pin 1 through pin 8 are shorted together, and pin 9 through pin 16 are shorted t ogether. 2 input capacitance is from any input data pin to ground. regulatory information see table 15 and the insulation lifetime section for details regarding recommended maximum working voltages for specific cross- isolation waveforms and insulation levels. table 11. ul (pending) csa (pending) vde (pending) cqc (pending) recognized under ul 1577 component recognition program 1 approved under csa component acceptance notice 5a certified according to din v vde v 0884-10 (vde v 0884-10):2006-12 2 certified under cqc11-471543-2012, gb4943.1-2011: single protection, 5000 v rms isolation voltage csa 60950-1-07+a1+a2 and iec 60950-1, second edition, +a1 + a2: reinforced insulation, v iorm = 849 v peak, v iosm = 10 kv peak basic insulation at 830 v rms (1174 v peak) basic insulation at 830 v rms (1174 v peak) basic insulation, v iorm = 849 v peak, v iosm = 16 kv peak reinforced insulation at 415 v rms (587 v peak) reinforced insulation at 415 v rms (587 v peak) tropical climate, altitude 5000 meters iec 60601-1 edition 3 + a1 two means of patient protection (2 mopp), 261 v rms (369 v peak) csa 61010-1-12 and iec 61010-1 third edition: basic insulation at 300 v rms mains, 830 v rms secondary (1174 v peak) file e214100 file 205078 file 2471900-4880-0001 file (pending) 1 in accordance with ul 1577, each adum260n / adum261n / adum262n / adum263n in the ri-16 wide body (soic_ic) package is proof tested by applying an insulation test voltage 6000 v rms for 1 sec. 2 in accordance with di n v vde v 0884-10, each adum260n / adum261n / adum262n / adum263n in the ri-16 wide body (soic_ic) package is proof tested by applying an insulation test voltage 1592 v peak for 1 sec (partial discharge detection limit = 5 pc). the * marking branded on the compon ent designates din v vde v 0884-10 approval.
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 12 of 23 din v vde v 0884-10 (vde v 0884-10) insulation characteristics these isolators are suitable for reinforced electrical isolation only within the safety limit data. protective circuits ensure the maintenance of the safety data. the * marking on packages denotes din v vde v 0884-10 approval. table 12. description test conditions/comments symbol characteristic unit installation classification per din vde 0110 for rated mains voltage 150 v rms i to iv for rated mains voltage 300 v rms i to iv for rated mains voltage 600 v rms i to iii climatic classification 40/125/21 pollution degree per din vde 0110, table 1 2 maximum working insulation voltage v iorm 849 v peak input to output test voltage, method b1 v iorm 1.875 = v pd (m) , 100% production test, t ini = t m = 1 sec, partial discharge < 5 pc v pd (m) 1592 v peak input to output test voltage, method a v pd (m) after environmental tests subgroup 1 v iorm 1.5 = v pd (m) , t ini = 60 sec, t m = 10 sec, partial discharge < 5 pc 1274 v peak after input and/or safety test subgroup 2 and subgroup 3 v iorm 1.2 = v pd (m) , t ini = 60 sec, t m = 10 sec, partial discharge < 5 pc 1019 v peak highest allowable overvoltage v iotm 8000 v peak surge isolation voltage basic v peak = 10 kv, 1.2 s rise time, 50 s, 50% fall time v iosm 16,000 v peak surge isolation voltage reinforced v peak = 10 kv, 1.2 s rise time, 50 s, 50% fall time v iosm 10,000 v peak safety limiting values maximum value allowed in the event of a failure (see figure 5) maximum junction temperature t s 150 c total power dissipation at 25c p s 2.78 w insulation resistance at t s r s >10 9 3.0 2.5 2.0 1.5 0.5 1.0 0 0200 150 100 50 safe limiting power (w) ambient temperature (c) 14998-005 figure 5. thermal derating curve, dependence of safety limiting values with ambient temperature per din v vde v 0884-10 recommended operat ing conditions table 13. parameter symbol rating operating temperature t a ?40c to +125c supply voltages v dd1 , v dd2 1.7 v to 5.5 v input signal rise and fall times 1.0 ms
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 13 of 23 absolute maximum ratings t a = 25c, unless otherwise noted. table 14. parameter rating storage temperature (t st ) range ?65c to +150c ambient operating temperature (t a ) range ?40c to +125c supply voltages (v dd1 , v dd2 ) ?0.5 v to +7.0 v input voltages (v ia , v ib , v ic , v id , v ie, v if ) ?0.5 v to v ddi 1 + 0.5 v output voltages (v oa , v ob , v oc , v od, v oe, v of ) ?0.5 v to v ddo 2 + 0.5 v average output current per pin 3 side 1 output current (i o1 ) ?10 ma to +10 ma side 2 output current (i o2 ) ?10 ma to +10 ma common-mode transients 4 ?150 kv/s to +150 kv/s 1 v ddi is the input side supply voltage. 2 v ddo is the output side supply voltage. 3 see figure 5 for the maximum rated current values for various temperatures. 4 refers to the common-mode transients across the insulation barrier. common-mode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage. stresses at or above those listed under absolute maximum ratings may cause permanent damage to the product. this is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. operation beyond the maximum operating conditions for extended periods may affect product reliability. esd caution table 15. maximum continuous working voltage 1 parameter rating constraint ac voltage bipolar waveform basic insulation 849 v peak 50-year minimum insulation lifetime reinforced insulation 819 v peak lifetime limited by pack age creepage maximum approved working voltage per iec 60950-1 unipolar waveform basic insulation 1698 v peak 50-year minimum insulation lifetime reinforced insulation 943 v peak lifetime limited by pack age creepage maximum approved working voltage per iec 60950-1 dc voltage basic insulation 1157 v peak lifetime limited by packag e creepage maximum approved working voltage per iec 60950-1 reinforced insulation 579 v peak lifetime limited by pack age creepage maximum approved working voltage per iec 60950-1 1 refers to the continuous voltage magnitude imposed across the isolation barrier. see the insulation lifetime section for more details. truth table table 16. adum260n / adum261n / adum262n / adum263n truth table (positive logic) v ix input 1, 2 v ddi state 2 v ddo state 2 default low (n0), v ox output 1, 2, 3 default high (n1), v ox output 1, 2, 3 test conditions/comments l powered powered l l normal operation h powered powered h h normal operation l unpowered powered l h fail-safe output x 4 powered unpowered indeterminate indeterminate output unpowered 1 l means low, h means high, and x means dont care. 2 v ix and v ox refer to the input and output signals of a given channel (a, b, c, d, e or f). v ddi and v ddo refer to the supply voltages on the input and output sides of the given channel, respectively. 3 n0 refers to the adum260n0 / adum261n0 / adum262n0 / adum263n0 models. n1 refers to the adum260n1 / adum261n1 / adum262n1 / adum263n1 models. see the ordering guide section. 4 input pins (v ix ) on the same side as an unpowered supply must be in a low state to avoid powering the device through its esd protection circui try.
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 14 of 23 pin configurations and function descriptions v dd1 v ia v ib v ic v id v ie v if v oa v ob v oc v od v oe v of gnd 1 v dd2 gnd 2 1 2 3 4 16 15 14 13 5 12 6 11 7 10 8 9 adum260n top view (not to scale) 14998-006 figure 6. adum260n pin configuration table 17. adum260n pin function descriptions pin no. 1 mnemonic description 1 v dd1 supply voltage for isolator side 1. 2 v ia logic input a. 3 v ib logic input b. 4 v ic logic input c. 5 v id logic input d. 6 v ie logic input e. 7 v if logic input f. 8 gnd 1 ground 1. ground reference for isolator side 1. 9 gnd 2 ground 2. ground reference for isolator side 2. 10 v of logic output f. 11 v oe logic output e. 12 v od logic output d. 13 v oc logic output c. 14 v ob logic output b. 15 v oa logic output a. 16 v dd2 supply voltage for isolator side 2. 1 reference the an-1109 application note for specific layout guidelines.
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 15 of 23 v dd1 v ia v ib v ic v id v ie v of v oa v ob v oc v od v oe v if gnd 1 v dd2 gnd 2 1 2 3 4 16 15 14 13 5 12 6 11 7 10 8 9 adum261n top view (not to scale) 14998-007 figure 7. adum261n pin configuration table 18. adum261n pin function descriptions pin no. 1 mnemonic description 1 v dd1 supply voltage for isolator side 1. 2 v ia logic input a. 3 v ib logic input b. 4 v ic logic input c. 5 v id logic input d. 6 v ie logic input e. 7 v of logic output f. 8 gnd 1 ground 1. ground reference for isolator side 1. 9 gnd 2 ground 2. ground reference for isolator side 2. 10 v if logic input f. 11 v oe logic output e. 12 v od logic output d. 13 v oc logic output c. 14 v ob logic output b. 15 v oa logic output a. 16 v dd2 supply voltage for isolator side 2. 1 reference the an-1109 application note for specific layout guidelines.
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 16 of 23 v dd1 v ia v ib v ic v id v oe v of v oa v ob v oc v od v ie v if gnd 1 v dd2 gnd 2 1 2 3 4 16 15 14 13 5 12 6 11 7 10 8 9 adum262n top view (not to scale) 14998-008 figure 8. adum262n pin configuration table 19. adum262n pin function descriptions pin no. 1 mnemonic description 1 v dd1 supply voltage for isolator side 1. 2 v ia logic input a. 3 v ib logic input b. 4 v ic logic input c. 5 v id logic input d. 6 v oe logic output e. 7 v of logic output f. 8 gnd 1 ground 1. ground reference for isolator side 1. 9 gnd 2 ground 2. ground reference for isolator side 2. 10 v if logic input f. 11 v ie logic input e. 12 v od logic output d. 13 v oc logic output c. 14 v ob logic output b. 15 v oa logic output a. 16 v dd2 supply voltage for isolator side 2. 1 reference the an-1109 application note for specific layout guidelines.
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 17 of 23 v dd1 v ia v ib v ic v od v oe v of v oa v ob v oc v id v ie v if gnd 1 v dd2 gnd 2 1 2 3 4 16 15 14 13 5 12 6 11 7 10 8 9 adum263n top view (not to scale) 14998-009 figure 9. adum263n pin configuration table 20. adum263n pin function descriptions pin no. 1 mnemonic description 1 v dd1 supply voltage for isolator side 1. 2 v ia logic input a. 3 v ib logic input b. 4 v ic logic input c. 5 v od logic output d. 6 v oe logic output e. 7 v of logic output f. 8 gnd 1 ground 1. ground reference for isolator side 1. 9 gnd 2 ground 2. ground reference for isolator side 2. 10 v if logic input f. 11 v ie logic input e. 12 v id logic input d. 13 v oc logic output c. 14 v ob logic output b. 15 v oa logic output a. 16 v dd2 supply voltage for isolator side 2. 1 reference the an-1109 application note for specific layout guidelines.
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 18 of 23 typical performance characteristics 25 20 15 10 5 0 0 20406080100120140160 i dd1 supply current (ma) data rate (mbps) 5v 3.3v 2.5v 1.8v 14998-010 figure 10. adum260n i dd1 supply current vs. data rate at various voltages 25 20 15 10 5 0 0 20406080100120140160 i dd2 supply current (ma) data rate (mbps) 5v 3.3v 2.5v 1.8v 14998-011 figure 11. adum260n i dd2 supply current vs. data rate at various voltages i dd1 supply current (ma) data rate (mbps) 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 5v 3.3v 2.5v 1.8v 14998-012 figure 12. adum261n i dd1 supply current vs. data rate at various voltages i dd2 supply current (ma) data rate (mbps) 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 5v 3.3v 2.5v 1.8v 14998-013 figure 13. adum261n i dd2 supply current vs. data rate at various voltages 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 5v 3.3v 2.5v 1.8v i dd1 supply current (ma) data rate (mbps) 14998-014 figure 14. adum262n i dd1 supply current vs. data rate at various voltages 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 5v 3.3v 2.5v 1.8v i dd2 supply current (ma) data rate (mbps) 14998-015 figure 15. adum262n i dd2 supply current vs. data rate at various voltages
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 19 of 23 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 i dd1 supply current (ma) data rate (mbps) 5v 3.3v 2.5v 1.8v 14998-016 figure 16. adum263n i dd1 supply current vs. data rate at various voltages 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 5v 3.3v 2.5v 1.8v i dd2 supply current (ma) data rate (mbps) 14998-017 figure 17. adum263n i dd2 supply current vs. data rate at various voltages 14 12 10 8 6 4 2 0 ?40?200 20406080 120 100 140 propagation delay t plh (ns) temperature (c) 5v 3.3v 2.5v 1.8v 14998-018 figure 18. propagation delay, t plh vs. temperature at various voltages 14 12 10 8 6 4 2 0 ?40?200 20406080 120 100 140 propagation delay t phl (ns) temperature (c) 5v 3.3v 2.5v 1.8v 14998-019 figure 19. propagation delay, t phl vs. temperature at various voltages
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 20 of 23 theory of operation the adum260n / adum261n / adum262n / adum263n use a high frequency carrier to transmit data across the isolation barrier using i coupler chip scale transformer coils separated by layers of polyimide isolation. using an on/off keying (ook) technique and the differential architecture shown in figure 20 and figure 21, the adum260n / adum261n / adum262n / adum263n have very low propagation delay and high speed. internal regulators and input/output design techniques allow logic and supply voltages over a wide range from 1.7 v to 5.5 v, offering voltage translation of 1.8 v, 2.5 v, 3.3 v, and 5 v logic. the architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference. radiated emissions are minimized with a spread spectrum ook carrier and other techniques. figure 20 shows the waveforms for models of the adum260n0 / adum261n0 / adum262n0 / adum263n0 that have the condition of the fail-safe output state equal to low, where the carrier waveform is off when the input state is low. if the input side is off or not operating, the fail-safe output state of low sets the output to low. for the adum260n1 / adum261n1 / adum262n1 / adum263n1 that have a fail-safe output state of high, figure 21 illustrates the conditions where the carrier waveform is off when the input state is high. when the input side is off or not operating, the fail-safe output state of high sets the output to high. see the ordering guide for the model numbers that have the fail-safe output state of low or the fail-safe output state of high. transmitter gnd 1 gnd 2 v in v out receiver regulator regulator 14998-020 figure 20. operational block diagram of a single channel with a low fail-safe output state transmitter gnd 1 gnd 2 v in v out receiver regulator regulator 14998-021 figure 21. operational block diagram of a single channel with a high fail-safe output state
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 21 of 23 applications information pcb layout the adum260n / adum261n / adum262n / adum263n digital isolators require no external interface circuitry for the logic interfaces. power supply bypassing is strongly recommended at the input and output supply pins (see figure 22). bypass capacitors are connected between pin 1 and pin 8 for v dd1 and between pin 9 and pin 16 for v dd2 . the recommended bypass capacitor value is between 0.01 f and 0.1 f. the total lead length between both ends of the capacitor and the input power supply pin must not exceed 10 mm. v dd1 v ia v ib v ic v id , v od v ie , v oe v if , v of gnd 1 v dd2 v oa v ob v oc v id , v od v ie , v oe v if , v of gnd 2 14998-022 figure 22. recommended printed circuit board layout in applications involving high common-mode transients, ensure that board coupling across the isolation barrier is minimized. furthermore, design the board layout such that any coupling that does occur equally affects all pins on a given component side. failure to ensure this can cause voltage differentials between pins exceeding the absolute maximum ratings of the device, thereby leading to latch-up or permanent damage. see the an-1109 application note for board layout guidelines. propagation delay related parameters propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. the propagation delay to a logic 0 output may differ from the propagation delay to a logic 1 output. input (v ix ) output (v ox ) t plh t phl 50% 50% 14998-023 figure 23. propagation delay parameters pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the timing of the input signal is preserved. channel matching is the maximum amount the propagation delay differs between channels within a single adum260n / adum261n / adum262n / adum263n component. propagation delay skew is the maximum amount the propagation delay differs between multiple adum260n / adum261n / adum262n / adum263n components operating under the same conditions. jitter measurement figure 24 illustrates the eye diagram for the adum260n / adum261n / adum262n / adum263n . the measurement was taken using an agilent 81110a pulse pattern generator at 150 mbps with pseudorandom bit sequences (prbs) 2(n ? 1), n = 14, for 5 v supplies. jitter was measured with the tektronix model 5104b oscilloscope, 1 ghz, 10 gsps with the dpojet jitter and eye diagram analysis tools. the result shows a typical measurement on the adum260n / adum261n / adum262n / adum263n with 490 ps p-p jitter. 10 5 0 1 2 3 4 voltage (v) 5 0 time (ns) ?5 ?10 14998-024 figure 24. adum260n / adum261n / adum262n / adum263n eye diagram insulation lifetime all insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. the rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation as well as on the materials and material interfaces. the two types of insulation degradation of primary interest are breakdown along surfaces exposed to the air and insulation wear out. surface breakdown is the phenomenon of surface tracking, and the primary determinant of surface creepage requirements in system level standards. insulation wear out is the phenomenon where charge injection or displacement currents inside the insulation material cause long-term insulation degradation. surface tracking surface tracking is addressed in electrical safety standards by setting a minimum surface creepage based on the working voltage, the environmental conditions, and the properties of the insulation material. safety agencies perform characterization testing on the surface insulation of components that allows the components to be categorized in different material groups. lower material group ratings are more resistant to surface tracking and, therefore, can provide adequate lifetime with smaller creepage. the minimum creepage for a given working voltage and material group is in each system level standard and is based on the total rms voltage across the isolation, pollution degree, and material group. the material group and creepage for the adum260n / adum261n / adum262n / adum263n isolators are presented in table 9.
adum260n/adum261n/adum262n/adum263n data sheet rev. 0 | page 22 of 23 insulation wear out the lifetime of insulation caused by wear out is determined by its thickness, material properties, and the voltage stress applied. it is important to verify that the product lifetime is adequate at the application working voltage. the working voltage supported by an isolator for wear out may not be the same as the working voltage supported for tracking. the working voltage applicable to tracking is specified in most standards. testing and modeling have shown that the primary driver of long- term degradation is displacement current in the polyimide insulation causing incremental damage. the stress on the insulation can be broken down into broad categories, such as: dc stress, which causes very little wear out because there is no displacement current, and an ac component time varying voltage stress, which causes wear out. the ratings in certification documents are usually based on 60 hz sinusoidal stress because this reflects isolation from line voltages. however, many practical applications have combinations of 60 hz ac and dc across the barrier as shown in equation 1. because only the ac portion of the stress causes wear out, equation 1 can be rearranged to solve for the ac rms voltage, as is shown in equation 2. for insulation wear out with the polyimide materials used in these products, the ac rms voltage determines the product lifetime. 22 dc rmsac rms vvv ? ? (1) or 2 2 dc rms rms ac vv v ?? (2) where: v ac rms is the time varying portion of the working voltage. v rms is the total rms working voltage. v dc is the dc offset of the working voltage. calculation and use of parameters example the following example frequently arises in power conversion applications. assume that the line voltage on one side of the isolation is 240 v ac rms, a 400 v dc bus voltage is present on the other side of the isolation barrier, and the isolator material is polyimide. to establish the critical voltages in determining the creepage, clearance and lifetime of a device, see figure 25 and the following equations. isolation voltag e time v ac rms v rms v dc v peak 14998-025 figure 25. critical voltage example the working voltage across the barrier from equation 1 is 22 dc rmsac rms vvv ? ? 22 400240 ?? rms v v rms = 466 v this v rms value is the working voltage used together with the material group and pollution degree when looking up the creepage required by a system standard. to determine if the lifetime is adequate, obtain the time varying portion of the working voltage. to obtain the ac rms voltage, use equation 2. 2 2 dc rms rms ac vv v ?? 22 400466 ?? rmsac v v ac rms = 240 v rms in this case, the ac rms voltage is simply the line voltage of 240 v rms. this calculation is more relevant when the waveform is not sinusoidal. the value is compared to the limits for working voltage in table 15 for the expected lifetime, less than a 60 hz sine wave, and it is well within the limit for a 50-year service life. note that the dc working voltage limit in table 15 is set by the creepage of the package as specified in iec 60664-1. this value can differ for specific system level standards.
data sheet adum260n/adum261n/adum262n/adum263n rev. 0 | page 23 of 23 outline dimensions 11-15-2011-a 16 9 8 1 seating plane coplanarity 0.1 1.27 bsc 12.85 12.75 12.65 7.60 7.50 7.40 2.64 2.54 2.44 1.01 0.76 0.51 0.30 0.20 0.10 10.51 10.31 10.11 0.46 0.36 2.44 2.24 pin 1 mark 1.93 ref 8 0 0.32 0.23 0.71 0.50 0.31 45 0.25 bsc gage plane compliant to jedec standards ms-013-ac figure 26. 16-lead standard small outline package, with increased creepage [soic_ic] wide body (ri-16-2) dimensions shown in millimeters ordering guide model 1 temperature range no. of inputs, v dd1 side no. of inputs, v dd2 side withstand voltage rating (kv rms) fail-safe output state package description package option ADUM260N1BRIZ ?40c to +125c 6 0 5.0 high 16-lead soic_ic ri-16-2 ADUM260N1BRIZ-rl ?40c to +125c 6 0 5.0 high 16-lead soic_ic ri-16-2 adum260n0briz ?40c to +125c 6 0 5.0 low 16-lead soic_ic ri-16-2 adum260n0briz-rl ?40c to +125c 6 0 5.0 low 16-lead soic_ic ri-16-2 adum261n1briz ?40c to +125c 5 1 5.0 high 16-lead soic_ic ri-16-2 adum261n1briz-rl ?40c to +125c 5 1 5.0 high 16-lead soic_ic ri-16-2 adum261n0briz ?40c to +125c 5 1 5.0 low 16-lead soic_ic ri-16-2 adum261n0briz-rl ?40c to +125c 5 1 5.0 low 16-lead soic_ic ri-16-2 adum262n1briz ?40c to +125c 4 2 5.0 high 16-lead soic_ic ri-16-2 adum262n1briz-rl ?40c to +125c 4 2 5.0 high 16-lead soic_ic ri-16-2 adum262n0briz ?40c to +125c 4 2 5.0 low 16-lead soic_ic ri-16-2 adum262n0briz-rl ?40c to +125c 4 2 5.0 low 16-lead soic_ic ri-16-2 adum263n1briz ?40c to +125c 3 3 5.0 high 16-lead soic_ic ri-16-2 adum263n1briz-rl ?40c to +125c 3 3 5.0 high 16-lead soic_ic ri-16-2 adum263n0briz ?40c to +125c 3 3 5.0 low 16-lead soic_ic ri-16-2 adum263n0briz-rl ?40c to +125c 3 3 5.0 low 16-lead soic_ic ri-16-2 1 z = rohs compliant part. ?2016 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d14998-0-12/16(0)


▲Up To Search▲   

 
Price & Availability of ADUM260N1BRIZ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X